**Answer:**

First month of next month ( x = 13) ** = 6170**

second month ( x = 14 ) ** = 6389**

**Explanation:**

Determine the estimate demand for each month next year ( use Linear regression )

Linear regression equation**: y = a + bx **

a = intercept between regression line and y-axis

b = slope of regression

x = month

y = demand

<u>Using excel table attached below</u>

∑x = 78

∑xy = 413340

∑y = 59360

∑(x)^2 = 650

N = 12

(∑x )^2 = 6084

next we will calculate the slope and intercept value

b ( slope ) = ( 12 * 413340 ) - ( 78 * 59360 ) / ( 12 * 650 - 6084 )

= 330,000 / 1716 =** 192.31**

intercept ( a ) = 59360 - ( 192.31 * 78 ) / 12 = **3696.65**

**Back to equation 1 : **

Linear regression equation =** Y = 3696.65 + 192.31 x **

**where x = number of month ( i.e. 13 , 14 ….. 24 )**

<u>To determine the estimate demand for each month next month</u>

Linear regression equation : Y = 3696.65 + 192.31 x

first month of next month ( x = 13) = **3696.65 + 192.31 * ( 13 ) **

second month ( x = 14 ) ** = 3696.65 + 192.31 * ( 14 ) **

<em>Note : apply same equation to every month ( i.e. from x = 15 to 24 ) to determine the estimate demand for each month </em>