Answer:
Part A:
B) mA*vA = mA*v′A*cosθ′A + mB*v′B*cosθ′B
Part B:
C) 0 = mA*v′A*sinθ′A − mB*v′B*sinθ′B
since vAy = 0 m/s
Part C:
θ′B = tan⁻¹(1.0699) = 46.94°
Part D:
v′B = 1.246 m/s
Explanation:
Given:
mA = 0.117 kg
vA = vAx = 2.80 m/s
mB = 0.135 kg
vB = 0 m/s
θ′A = 30.0°
v′A = 2.10 m/s
Part A: Taking the x axis to be the original direction of motion of ball A, the correct equation expressing the conservation of momentum for the components in the x direction is
B) mA*vA = mA*v′A*cosθ′A + mB*v′B*cosθ′B
Part B: Taking the x axis to be the original direction of motion of ball A, the correct equation expressing the conservation of momentum for the components in the y direction is
C) 0 = mA*v′A*sinθ′A − mB*v′B*sinθ′B
since vAy = 0 m/s
Part C: Solving these equations for the angle, θ′B , of ball B after the collision and assuming that the collision is not elastic:
mA*vA = mA*v′A*cosθ′A + mB*v′B*cosθ′B
⇒ (0.117)(2.80) = (0.117)(2.10)Cos 30° + (0.135)*v′B*cosθ′B
⇒ v′B*cosθ′B = 0.8505 ⇒ v′B = 0.8505/cosθ′B
then
0 = mA*v′A*sinθ′A − mB*v′B*sinθ′B
⇒ 0 = (0.117)(2.10)Sin 30° - (0.135)*v′B*sinθ′B
⇒ v′B*sinθ′B = 0.91 ⇒ v′B = 0.91/sinθ′B
if we apply
0.8505/cosθ′B = 0.91/sinθ′B
⇒ tanθ′B = 0.91/0.8505 = 1.0699
⇒ θ′B = tan⁻¹(1.0699) = 46.94°
Part D: Solving these equations for the speed, v′B , of ball B after the collision and assuming that the collision is not elastic:
if v′B = 0.91/sinθ′B
⇒ v′B = 0.91/sin 46.94°
⇒ v′B = 1.246 m/s