Answer:
y=4/3x+4
Step-by-step explanation:
![\bf \textit{equation of a circle}\\\\ (x- h)^2+(y- k)^2= r^2 \qquad center~~(\stackrel{}{ h},\stackrel{}{ k})\qquad \qquad radius=\stackrel{}{ r}\\\\ -------------------------------\\\\ (x+1)^2+y^2=36\implies [x-(\stackrel{h}{-1})]^2+[y-\stackrel{k}{0}]^2=\stackrel{r}{6^2}~~~~ \begin{cases} \stackrel{center}{(-1,0)}\\ \stackrel{radius}{6} \end{cases}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bequation%20of%20a%20circle%7D%5C%5C%5C%5C%20%0A%28x-%20h%29%5E2%2B%28y-%20k%29%5E2%3D%20r%5E2%0A%5Cqquad%20%0Acenter~~%28%5Cstackrel%7B%7D%7B%20h%7D%2C%5Cstackrel%7B%7D%7B%20k%7D%29%5Cqquad%20%5Cqquad%20%0Aradius%3D%5Cstackrel%7B%7D%7B%20r%7D%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C%0A%28x%2B1%29%5E2%2By%5E2%3D36%5Cimplies%20%5Bx-%28%5Cstackrel%7Bh%7D%7B-1%7D%29%5D%5E2%2B%5By-%5Cstackrel%7Bk%7D%7B0%7D%5D%5E2%3D%5Cstackrel%7Br%7D%7B6%5E2%7D~~~~%0A%5Cbegin%7Bcases%7D%0A%5Cstackrel%7Bcenter%7D%7B%28-1%2C0%29%7D%5C%5C%0A%5Cstackrel%7Bradius%7D%7B6%7D%0A%5Cend%7Bcases%7D)
so, that's the equation of the circle, and that's its center, any point "ON" the circle, namely on its circumference, will have a distance to the center of 6 units, since that's the radius.
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-1}~,~\stackrel{y_1}{0})\qquad A(\stackrel{x_2}{-1}~,~\stackrel{y_2}{1})\qquad \qquad % distance value d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ \stackrel{distance}{d}=\sqrt{[-1-(-1)]^2+(1-0)^2}\implies d=\sqrt{(-1+1)^2+1^2} \\\\\\ d=\sqrt{0+1}\implies d=1](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%0A%5C%5C%5C%5C%0A%28%5Cstackrel%7Bx_1%7D%7B-1%7D~%2C~%5Cstackrel%7By_1%7D%7B0%7D%29%5Cqquad%20%0AA%28%5Cstackrel%7Bx_2%7D%7B-1%7D~%2C~%5Cstackrel%7By_2%7D%7B1%7D%29%5Cqquad%20%5Cqquad%20%0A%25%20%20distance%20value%0Ad%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Cstackrel%7Bdistance%7D%7Bd%7D%3D%5Csqrt%7B%5B-1-%28-1%29%5D%5E2%2B%281-0%29%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%28-1%2B1%29%5E2%2B1%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0Ad%3D%5Csqrt%7B0%2B1%7D%5Cimplies%20d%3D1)
well, the distance from the center to A is 1, namely is "inside the circle".
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-1}~,~\stackrel{y_1}{0})\qquad B(\stackrel{x_2}{-1}~,~\stackrel{y_2}{6})\\\\\\ \stackrel{distance}{d}=\sqrt{[-1-(-1)]^2+(6-0)^2}\implies d=\sqrt{(-1+1)^2+6^2} \\\\\\ d=\sqrt{0+36}\implies d=6](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%0A%5C%5C%5C%5C%0A%28%5Cstackrel%7Bx_1%7D%7B-1%7D~%2C~%5Cstackrel%7By_1%7D%7B0%7D%29%5Cqquad%20%0AB%28%5Cstackrel%7Bx_2%7D%7B-1%7D~%2C~%5Cstackrel%7By_2%7D%7B6%7D%29%5C%5C%5C%5C%5C%5C%0A%5Cstackrel%7Bdistance%7D%7Bd%7D%3D%5Csqrt%7B%5B-1-%28-1%29%5D%5E2%2B%286-0%29%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%28-1%2B1%29%5E2%2B6%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0Ad%3D%5Csqrt%7B0%2B36%7D%5Cimplies%20d%3D6)
notice, the distance to B is exactly 6, and you know what that means.
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-1}~,~\stackrel{y_1}{0})\qquad C(\stackrel{x_2}{4}~,~\stackrel{y_2}{-8}) \\\\\\ \stackrel{distance}{d}=\sqrt{[4-(-1)]^2+[-8-0]^2}\implies d=\sqrt{(4+1)^2+(-8)^2} \\\\\\ d=\sqrt{25+64}\implies d=\sqrt{89}\implies d\approx 9.43398](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%0A%5C%5C%5C%5C%0A%28%5Cstackrel%7Bx_1%7D%7B-1%7D~%2C~%5Cstackrel%7By_1%7D%7B0%7D%29%5Cqquad%20%0AC%28%5Cstackrel%7Bx_2%7D%7B4%7D~%2C~%5Cstackrel%7By_2%7D%7B-8%7D%29%0A%5C%5C%5C%5C%5C%5C%0A%5Cstackrel%7Bdistance%7D%7Bd%7D%3D%5Csqrt%7B%5B4-%28-1%29%5D%5E2%2B%5B-8-0%5D%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%284%2B1%29%5E2%2B%28-8%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0Ad%3D%5Csqrt%7B25%2B64%7D%5Cimplies%20d%3D%5Csqrt%7B89%7D%5Cimplies%20d%5Capprox%209.43398)
notice, C is farther than the radius 6, meaning is outside the circle, hiking about on the plane.
Let's just choose "x" as our variable for the length of a side of the triangle.
Two sides of a triangle are equal in length and double the length of the shortest side.
A triangle has 3 sides. Make the smallest side x then the two equal sides that are double the smallest side are both equal to 2x
The perimeter of the triangle is 35 inches. Perimeter is the sum of all sides.
x + 2x + 2x = 35
5x = 35
x = 7
So the smallest side is 7, and the other two sides are 14.
Answer:
x<3
Step-by-step explanation:
4x-7<5
4x<5+7
4x<12
x<3
Answer:
62.8
In a triangle the sum of interior angles is always 180 degree. So by appropriate equation we get the result as
angle C = 90 -27.2=62.8