Answer:
Explanation:
Moment of inertia of the rod = 1/12 m L²
m is mass of the rod and L is its length
= 1/2 x 2.3 x 2 x 2
= 4.6 kg m²
Moment of inertia of masses attached with the rod
= m₁ d² + m₂ d²
m₁ and m₂ are masses attached , and d is their distance from the axis of rotation
= 5.3 x 1² + 3.5 x 1²
= 8.8 kg m²
Total moment of inertia = 13.4 kg m²
B )
Rotational kinetic energy = 1/2 I ω²
I is total moment of inertia and ω is angular velocity
= .5 x 13.4 x 2²
= 26.8 J .
C )
when mass of rod is negligible , moment of inertia will be due to masses only
Total moment of inertia of masses
= 8.8 kg m²
D )
kinetic energy of the system
= .5 x 8.8 x 2²
= 17.6 J .