**Answer:**

v = [√(g/2h)]L

**Explanation:**

Let v be the initial horizontal velocity, t be the time James Bond uses to jump over the ledge of length, L.

So, vt = L and t = L/v

Also, since James Bond has no initial horizontal velocity, he falls freely through the distance, h so we use the equation y - y' = ut - 1/2gt², where y = 0 (at the top of the cliff) and y' = -h, u = 0 (initial vertical velocity), g = acceleration due to gravity = 9.8 m/s² and t = the time it takes to jump off the cliff = L/v.

Substituting these values into the equation, we have

y' - y = ut - 1/2gt²

-h - 0 = 0 × t - 1/2g(L/v)²

-h = - 1/2gL²/v²

v² = gL²/2h

taking square root of both sides, we have

v = [√(g/2h)]L

So, James Bond's minimum horizontal speed is v = [√(g/2h)]L